
Encoding Data into MXF files:
BER and KLV encoding
Paper courtesy Omneon. Inc.

Why Does Data Need To Be Wrapped?

There can be no doubt that the Material eXchange Format, or “MXF”, is becoming widely adopted as the
format for file interchange and interoperability in TV workflows. MXF offers users significant advantages in
file-based operations because vital Metadata is included with the actual essence in the file itself, reducing
or sometimes eliminating the need to re-enter Metadata at the various stages in the workflow. There is a
misconception that the information in an MXF file (Metadata or Essence) is encoded in such a way as to
render the information difficult to extract and unreadable by humans. This is not the case. Whilst at the
lowest level MXF does use some encapsulation techniques (“wrapping”) when encoding data into a file,
these techniques in no way compromise the data elements themselves, which means that its possible to
view and extract information using even the most basic of binary viewers (although that would require a
lot of manual parsing of the file, which would be fairly tedious).

It’s important for engineers to fully understand the techniques involved in the creation and modification
of MXF files in order to be able to monitor and analyze the health of any individual clip, but the available
texts can be confusing.

This paper will detail the various encoding technologies utilized in the creation of MXF files – specifically,
the ISO/IEC Basic Encoding Rules (“BER”), and the MXF KLV wrapping scheme.

1

First, we should clarify the use of the term “Wrap-
ping”. Software uses wrapping techniques to create
containers which can hold items of data. A wrapper
encapsulates a single data source to make it usable
in a more convenient fashion than the original un-
wrapped source. The term is used extensively in the
media industry when talking about media (Quick-
Time is a Wrapper format, as is MXF). Its important to
note that by their very nature, wrappers not directly
define the format of the data contained within them
– that’s usually constrained by some other specifica-
tions. When talking about MXF, however, things can
get a little confusing: Many experts use the term “MXF
wrapped” to indicate that some form of essence has
been encapsulated into an MXF file. They will also
use the term “KLV wrapped” to talk about lower level
encapsulation of an individual piece of data. In this
case, “KLV wrapping” is exactly synonymous with “KLV
encoding”, and it is not unusual for both terms to be
used in a single specification

 MXF files can be big. Very big – it is not unusual for
a single video clip (with audio) to occupy Gigabytes of

storage. As in all Broadcast formats, there is a wish to
make the decoding of these enormous files as simple
as possible, putting more of the processing load on
the encoder. There are obvious economic reasons for
that: since there are likely to be many more decoders
than encoders, it is desirable from a system level to
make the decoders as inexpensive as possible for any
given task. It should be noted that there are still re-
quirements for different tiers of decoder as material
passes through the workflow to the consumer, rang-
ing from decoders that simply synchronize and play
the essence (video, audio and timecode), to those
which allow applications to modify/edit the essence
or interact with the Metadata embedded in the file.

As a format, MXF is intended to fulfill the file access
and transfer requirements for many workflows, from
the relatively simple, to the quite complex. When the
standard(s) for MXF were first being written, it was
recognized that this wish could be in conflict with the
first paragraph (above): a simple decoder is unlikely
to be able to deal with a very complex MXF file, so
how do you ensure that it doesn’t try? The solution

was to develop a scheme in which decoders could
find our very early in reading the process whether
or not this was a file that they could deal with. If not,
they could then produce an error code, and move on
to the next task. The same holds true for Metadata.
It can be argued that a simple playout decoder can
probably ignore all but the most important structur-
al elements contained in clip Metadata. How does it
know whether or not any particular Metadata item
is important in a specific application (and ignore the
ones that aren’t)? These considerations led to the cre-
ation of the KLV wrapping scheme used in the MXF
file format. KLV wrapping itself is dependent on some
other work: it makes heavy use of the ISO “BER” (Basic
Encoding Rules) in formatting numerical data, so to
fully understand KLV wrapping, we must first examine
BER.

ISO/IEC 8825-1: Basic Encoding Rules
(BER)

ISO/IEC 8825-1 is a 30-page International Standards
document, which details the methods which can be
used to pass data from one computer system to an-
other. It is quite broad in scope, and actually covers
the Basic Encoding Rules (“BER”), Canonical Encod-
ing Rules (“CER”) and Distinguished Encoding Rules
(“DER”). MXF files only use the BER, so for this paper
we will ignore the other 2 variants (they are merely
more restrictive encoding rules, offering less freedom
in the encoding process). Fig. 1 illustrates the struc-
ture of a BER-encoded value.

The Basic Encoding Rules define a method for en-
coding which consists of giving a piece of data a label
(called an Object Identifier, or “OID”), which tells the
receiving computer what kind of data is being trans-
mitted (integer number, real number, Boolean value,
string, etc). This label is then followed by a length
number, which is equal to the number of bytes imme-
diately following the length number. It is these sub-
sequent bytes, called the “Content Bytes” that usually
make up the value of the item being transmitted. BER
allows for “short” and “long” versions of the length.

The simple form has the length specified by a sin-
gle byte, whereas the long form can have the length
defined by multiple bytes. For the short form, the MSB
of the 1st (and only) byte is set to “0”, whereas for the
long form, the MSB is set to “1”, and the remaining
LSBs are used to indicate how many additional bytes
are being used for the length value. Thus a short

form-encoded value is limited to a maximum payload
of 127 bytes.

For completeness of description, it should be not-
ed that the BER allow for the addition of some “End-
of-contents” bytes after the Content Bytes, but this
option is not used in MXF files (they’re only used if
the length of a data value is not known at the start of
encoding).

This encoding scheme therefore creates unique
strings of bytes, which may represent any kind of item
– a name, a value, or even a string of individual bits to
be used in some logical activity. The specifications for
MXF use this coding methodology extensively, and
expand it out to be used in KLV coding.

2

Identi�er
byte Length byte(s)

1-n bytes “length” bytes

Contents bytes

Figure 1. BER coding

Key
(BER coded)

Length
(BER coded)

1-n bytes16 bytes “length” bytes

Value

Figure 2. KLV coding

All data in an MXF file, including the essence, is KLV
wrapped. At first glance, KLV wrapping looks very
much like BER encoding. At the 50,000 foot level, they
use very similar structures to encode data. However
KLV wrapping offers a great deal more flexibility in
the types of data that it can encode: where BER is Typ-
ically limited to the encoding of a single data item,
KLV can be used to encode an entire set of data val-
ues, which offers the ability to encapsulate all of the
parameters of an object into a single entity (such as
the Metadata for a frame of video, which has height,
width, bit depth, etc as its parameter set).

Fig 2 shows the basic structure of a KLV-wrapped
piece of data. If you compare it to Fig.1, you’ll see that
the major difference (at least superficially) is that the
single byte Object Identifier (OID) has now been re-
placed with a 16-byte key.

Key
As you look deeper into the KLV coding, though, you
will begin to see some other differences. First, lets dis-
cuss the key. The key is actually a Universal Label (or
“UL”), as defined in SMPTE 298M. This key is a SMPTE
specified 16-byte string, which specifies exactly what
kind of data is being carried in the KLV triplet.

The key is itself encoded using BER. The first byte of
the key is the OID, and is always 0x06 (for those of you
confused by this nomenclature, it simply means the
value 06 in Hexadecimal notation).

The second byte of the key (which, referring to the
BER description above, is the first byte of the length
value for the key) is short form encoded, and always
has the value 0x0E. That means that the payload is 14
bytes, so when added to the key OID and length byte,
we see that a SMPTE UL is always 16 bytes long.

The second 2 bytes in the key identify this key as
being administered by SMPTE (in other words, if you
want to look up what the rest of the key means, you
need to look it up in a SMPTE document). These two
bytes are always 0x2B and 0x34.

Combining the above points means that a SMPTE
UL (key) will always start with 0x06, 0x0E, 0x2B, 0x34.
Software decoders can look for this pattern to deter-
mine the start of any KLV triplet. The remaining 12
bytes make up the detail of the label itself. Finding the
meaning of the label requires a dictionary/registry,
against which to compare the rest of the label. Byte
5, 6, 7 & 8 of the UL is used to tell you which type of
reference document you need to look for (and which
version of it applies): a dictionary of Metadata terms
(SMPTE RP 210), or a dictionary of labels (SMPTE RP
224). In some circumstances, it can be possible for the
definition of the label to tell you how long the pay-
load is. This should not be used as an absolute: that’s
where the Length parameter comes in.

Length
The Length value performs the same function as
the length byte(s) in the BER case. This value is itself
BER coded, but the specification mandates that the
Length can never be more than 9 bytes in size (which
means 8 bytes of payload length). In most cases, re-
al-world MXF files use 4 or 8 bytes to define the size.

Value
Finally, we have the Value. This is where the actual
data is placed, and it is inserted exactly as it appears
in its original form, in byte order. There is no addition-
al processing applied to the data bytes themselves.

Groups, Sets and Packs
Sometimes, it is convenient to gather together a
number of pieces of data into a single logical entity
(this is certainly true for metadata items). KLV allows
for this by offering the capability to have the data be
collected into groups, sets and packs. Outside of con-
venience, there is another compelling reason for do-
ing this: Its clear that KLV coding offers a lot of flexibil-
ity, but it also adds overhead: If the value of the data
being carried only fills 2 bytes, for example, the KLV

KLV Wrapping

3

Figure 3. KLV recursion (the “value” is made up of KLV packets

Key Length
Value

K L V K L V K L V K L V K L V

4

packet will be 19 bytes long – 16 for the key, 1 for the
Length, and 2 for the payload. Whilst this might be OK
for an occasional small value, if the number of small
items is significant (as it is likely to be in the case of
Metadata items, which are generally just a few bytes
in length) then so is the overhead.

Sets
The answers to these problems come in the form of
constructs called Universal sets, Local sets, and Vari-
able- and Fixed-length packs – all of which can all
be used to improve the coding efficiency. All work
on the principle of recursion: You can use one large
KLV packet to contain a collection of other KLV pack-
ets (see Fig 3). This outer KLV’s key indicates that its
payload consists of other KLV packets is by a change
in byte 5 – which indicates what kind of grouping is

being used. It should be noted that while all items in
an MXF file are KLV wrapped - including the essence
– this recursion/grouping technique is only used for
Metadata items (as they tend to have the smaller data
sets).

Universal Sets are the simplest construct to un-
derstand. They are simply a collection of KLV values
sitting under a large KLV umbrella. The only reason
for using Universal Sets is to conveniently gather a

set of metadata parameters together under a single
entity. There is no improvement in efficiency (in fact,
its slightly less efficient, as you now have to generate
the umbrella Key and Length data). It does emphasize
the object-oriented nature of MXF metadata, though,
as all of the metadata items for a particular class of
object are gathered together into a single KLV item.

Local Sets take the above idea one step further,
and add some efficiency in coding. The principle of
recursion remains the same, but instead of full 16-
byte keys, the recursed data use 1 or 2 byte “Tags”
as their Key value. This instantly reduces the coding
overhead quite dramatically. Whilst BER coding of the
length fields is possible, in practice, the Length fields
are generally constrained in size – the recursed KLVs
in an MXF local set typically have 1 or 2 byte lengths.
The Tags can be converted back into full SMPTE ULs

through the use of look-up tables, which are con-
tained in a separate Metadata block called the “Prim-
er Pack”, located early in the MXF file. See Fig. 4 for
details of a local set.

Key Length
Value

2-byte
tag L V 2-byte

tag L V 2-byte
tag L V 2-byte

tag L V

Key Length
Value

L V L V L V L V L V L V L V

L/V pairs are in speci�c (unchanging) order

Figure 4. Example of “local set”

Figure 5. Example of “variable-length pack”

The combination of Basic Encoding Rules and Key-
Length-Value wrapping allows MXF to make use of
IT best practices to minimize the effort required to
place and organize complex Metadata structures into
sensible objects for inclusion with the essence. Whilst
initially somewhat daunting, the basic principles are
simple to grasp, and once understood, the KLV wrap-
ping scheme can be readily examined for analysis and
compliance purposes.

The slight increase in overhead caused by such
wrapping is massively outweighed by the improve-
ments in workflow efficiency and management that
such techniques enable – applications can be made
much more efficient if they have the ability to look at
individual data sets and decide if the data carried is
important in any particular instance, rather than hav-
ing to read (potentially) huge amounts of data just to
get to the items of interest. This reduces processing
time, with a resultant increase in responsiveness, or
may mean that less expensive processors can be used

to perform a particular task. As files are likely to be
accessed many times as they make their way through
the workflow, the savings accumulate in each stage,
resulting in significantly improved solutions

This white paper was supplied to the AMWA by Om-
neon, now Harmonic Inc.

Further white papers on MXF, AAF, XML and SOA ap-
plied to advanced media workflow can be download-
ed from the AMWA website at www.amwa.tv.

9/2013

Packs
 Variable-Length Packs take this idea further still: a
Variable-Length Pack is once again defined in byte 5
of the outer KLV coding. The recursed data elements
now have no local tag at all: in a Variable-Length Pack,
the data items must exist in a logical, pre-defined or-
der (again, this order is defined in the Primer Pack).
See Fig. 5

Finally, we have the option to use a Fixed-Length

Pack. In this case, even the length fields are omitted –
the specification for the Pack includes the order of the
data items, and the length value for each data item.
Fixed-Length Packs are analogous to a simple ordered
list, contained in a single KLV construct. See Fig 6.

Conclusion

5

Key Length
Value

V V V V V VV

Values are in speci�c (unchanging) order and size

Figure 6. Example of “fixed-length pack”

